2017

MATHEMATICS

Full Marks: 100

Pass Marks: 33

Time: Three Hours and *Fifteen Minutes

(*15 minutes are given as extra time for reading questions)

Attempt all Questions.

The figures in the right margin indicate full marks for the questions.

For Question Nos. 1-6, write the letter associated with the correct answer.

1. The identity element of the binary operation * on R defined by

$$a*b = \frac{ab}{4}$$
, $\forall a, b \in R$ is:

1

A. 0

- B. 1
- C. 4
- D. 16

The function $f(x) = (x+1)^3 (x-3)^3$ is increasing in the interval:

- A. (-1, 3)
- B. (-∞, 1)
- C. (1, ∞)
- D. (-∞, ∞)

Time : Three Hours and Butteer 3. $\int_0^1 \sqrt{1-x^2} dx$ equals : 10 mass as newly we remain and 1

Aftempt all Questions.

questions.

is figures in the right margin traicess full ma

BOTTAMETHT AND

OOI : estant Hari

Pass Marks : 83

- For Guestion Vos. 1-6, runte the letter associated with
- C.

The principal value of $\cos^{-1}\left(\cos\frac{2\pi}{3}\right) + \sin^{-1}\left(\sin\frac{2\pi}{3}\right)$ is:

1

5. The distance between the planes 2x+3y+4z=4 and 4x+6y+8z=12 is:

What is meant by a solution of a differential

axes, prove that she wash Brain ve

- A. 2 units
- B. 8 units
- C. $\frac{2}{\sqrt{29}}$ units
- D. $\frac{8}{\sqrt{29}}$ units

6. If $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$, the angle between \vec{a} and \vec{b} is:

- A. 0
- B. $\frac{\pi}{4}$ and $P(B) = \frac{\pi}{2}$ and $P(B) = \frac{\pi}{2}$ and $P(B) = \frac{\pi}{2}$ and $P(B) = \frac{\pi}{2}$
- 17. Prove that the relation R defined in Z by $x R y y z \frac{\pi}{2} d$.3by if |x-y| is a multiple of $\bar{z}(x, y \in \mathbb{Z})$ is an equivalence relation.
 - D. π

7. Show that the function $f: R \to R$ defined by f(x)=4x-3, $\forall x \in R$ is injective.

- 8. Give geometrical interpretation of Lagrange's Mean Value Theorem.
- 9. Is Rolle's Theorem applicable to the function $f(x) = \tan x$ in the interval $[0, \pi]$?
- 10. Find the slope of the normal to the curve $y=3x^2-\sin x$ at x=0.

11. Evaluate
$$\int_0^1 \frac{1}{1+x^2} dx$$
 and solve the solution of $\int_0^1 \frac{1}{1+x^2} dx$ and solve $\int_0^1 \frac{1}{1+x^2} dx$ and $\int_0^1 \frac{1}{1+x^2} dx$ and $\int_0^1 \frac{1}{1+x^2} dx$

1

12. What is meant by a solution of a differential equation?

13. Define position vector of a point.

1

14. If α , β , γ be the angles made by a line with the coordinate axes, prove that $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$.

15. Find the angle between the lines whose direction ratios are (1,-2, 3) and (1,-1,-1).

16. If $P(B) = \frac{1}{3}$ and $P(A/B) = \frac{2}{5}$, find $P(A \cap B)$.

17. Prove that the relation R defined in \mathbb{Z} by xRy if and only if |x-y| is a multiple of $5(x, y \in \mathbb{Z})$ is an equivalence relation.

3

18. If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$, prove that $A^3 = A^{-1}$.

19. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sin 2x}{\sin^4 x + \cos^4 x} dx$.

20. Prove that $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + C$ equals and form $\frac{3}{1 - x}$

- 21. Find the differential equation of the family of curves $y = e^x (A\cos x + B\sin x)$, where A and B are arbitrary constants.
- 22. A bag contains 3 black and 2 white balls and another bag contains 2 black and 4 white balls. One bag is chosen at random and from it a ball is drawn. Find the probability that the ball drawn is white.
- 23. Show that $\sin^{-1}\frac{12}{13} + \cos^{-1}\frac{4}{5} + \tan^{-1}\frac{63}{16} = \pi$

Or

If
$$\cos^{-1}\left(\frac{x}{a}\right) + \cos^{-1}\left(\frac{y}{b}\right) = \alpha$$
, prove that
$$\frac{x^2}{a^2} - \frac{2xy}{ab}\cos\alpha + \frac{y^2}{b^2} = \sin^2\alpha$$

- 24. If the inverse of a square matrix exists, prove that it is unique. If A and B are both invertible square matrices of the same order, prove that $(AB)^{-1} = B^{-1}A^{-1}$.
- 25. If $x\sin(a+y) + \sin a\cos(a+y) = 0$, prove that $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$

Or

Find $\frac{dy}{dx}$, if $(\cos x)^y = (\cos y)^x$.

- 26. If a function f is differentiable at a point, prove that it is also continuous at that point.
- 27. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the straight line $\frac{x}{a} + \frac{y}{b} = 1$.

Or

Find the area of the region bounded by the lines x+2y=2, y-x=1 and 2x+y=7.

- 28. Find the integrating factor of the linear equation $\frac{dy}{dx}Py=Q$ and hence obtain the general solution of the equation.
- 29. Using the product $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$, solve the

If A and B are both invertible s

order, prove that (AR) = F

following system of equations:

4

$$x-y+2z=1$$

$$2y-3z=1$$

$$3x-2y+4z=2$$

30. Show that the right circular cone of least curved surface and given volume has an altitude equal to $\sqrt{2}$ times the radius of the base.

Or

Prove that the curves $y^2 = x$ and xy = k cut at right angles if $8k^2 = 1$.

31. Prove that : Dave source of the A enwob-on owl

The stream of
$$\int_0^{\pi} \frac{1}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{\pi^2}{2ab}$$
 is considered as $\frac{1}{a^2} \cos^2 x + \frac{1}{a^2} \cos^2 x +$

per quintal from go-downs of the shops are given in the table

$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{\sqrt{a^2 + b^2}} \cos \left(bx - \tan^{-1} \frac{b}{a} \right) + C$$

32. Define cross product of two vectors and give the geometrical interpretation of the cross product of two vectors. If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, obtain the algebraic formula for $\vec{a} \times \vec{b}$.

How should the supplies be transported in order that

If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$, obtain the algebraic formula for the scalar triple product $\vec{a} \cdot (\vec{b} \times \vec{c})$, and hence prove that $\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$.

33. Derive the vector equation of a line passing through two given points and hence obtain the Cartesian equation of the line.

Or

Derive the vector equation of a plane passing through three non-collinear points and hence obtain the equation of a plane in the intercept form.

34. Two cards are drawn simultaneously from a well shuffled pack of 52 cards. Find the probability distribution, mean and variance of the number of aces.

22 Mth 10/17(I)

35. Two go-downs A and B have a grain storage capacity of 100 quintals and 50 quintals respectively. They supply grain to three ration shops D, E and F whose requirements are 60, 50 and 40 quintals respectively. The cost of transportation per quintal from go-downs to the shops are given in the table below:

То	Transportation cost per quintal (in rupees)		
From	D. D. Carrier	E	F
A A CONTRACTOR	to toucher and	vi lo jauborq 8	2.50
iandag B anii ni	estelo A.A. in the	= d . D2 . Nan +	3.5

How should the supplies be transported in order that the transportation cost is minimum? Solve the problem graphically.

6

obtain the eigebraic formula for the scalar triple product $(b \times c)$ and hence prove that $c.(b \times c) = b.(c \times c) = c.(d \times b)$.

Derive the vector equation of a line passing through two given points and hence obtain the Cortestan equation of the line.

34. Two cards are drawn annullaneously from a well smullled pack and out 52 cards. Eind the probability distribution, mean and variance of the member of aces.